An Overview of Ventilator Pressures and Waveforms

Al Heuer, PhD, MBA, RRT RPFT, FAARC Professor- Rutgers-SHP Lead ICU Therapist- Morristown Medical Center Co-Owner-A & T Lectures

Learning Objectives

- Review Various Ventilatory Pressures
- Examine Strategies to Manage Pressures
- Describe Pulmonary Mechanics and Techniques to Manage Them
- Review the Basics of Ventilator Waveforms
- Examine Strategies to Manage Common Waveform Abnormalities
- Review Some Examples
- Furnish Additional Resources

Key Ventilating Pressures

Pressures:

- Peak Inspiratory Pressure (PIP) The highest level of pressure applied to the lungs during Inhalation.
- Positive End Expiratory Pressure
 (PEEP) The application of pressure above atmospheric during exhalation.
- ✓ Mean Airway Pressure (Рмеам)
- ✓ Plateau Pressure (PPLAT)
- ✓ Driving Pressure (△P)

Positive End Expiratory Pressure (PEEP)

NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary

OXYGENATION GOAL: PaO₂ 55-80 mmHg or SpO₂ 88-95% Use a minimum PEEP of 5 cm H₂O. Consider use of incremental FiO₂/PEEP combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher FiO2

Lotter / Let / Higher froz								
FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0	
PEEP	5	5	8	8	10	10	1	
					10			
FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0		
PEEP	14	14	14	16	18	18-24	4	
Higher PEEP/lower FiO2								
FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0	
PEEP	5	8	10	12	14	14	1	
FIO ₂	0.5	0.5-0	.8	0.8	0.9	1.0	1.	
PEEP	18	20		22	22	22	24	
	10	20				22	-	

Mean Airway Pressure (PMEAN OR MAP)

- Refers to the average pressure applied during positivepressure mechanical ventilation.
- •Used to Calculate Oxygen Index:

\checkmark (OI) = MAP X FIO2 X 100 / PO2

✓ Lower OI is better -- Targeted OI < 20-25

✓ Unlike P:F Ratio, OI considers patient *response to* both PEEP & FIO2

•PEEP is a major contributor to MAP

Plateau Pressure (PPLAT)

- Goal is to maintain a $P_{PLAT} \leq 30 \text{ cm} \text{H2O}$, preferably $\leq 25 \text{ cm} \text{H2O}$
- Implicated as a contributor to Vent Induced Lung Injury (VILI)
- It is measured by performing an *inspiratory pause*
- Used to Calculate Static Compliance (CL)
- Basic strategies to manage PPLAT Include: ✓ Tidal Volume (in volume ventilation) or Peak Inspiratory Pressure (in Pressure) Control Ventilation)
 - ✓ Inspiratory Time or Inspiratory Flow Rate
 - ✓ Inspiratory Flow Waveform
 - ✓ Address any Air Trapping or Auto-Peep

Driving Pressure

- •The difference between the plateau pressure and PEEP (Plateau minus PEEP).
- Comprised of two pressures applicable to the lung itself, the transpulmonary pressure ($\triangle PL$), and that applied to the chest wall (\triangle PCW).
- Current suggestions are to maintain driving pressures < 15cmH2O.
- Management Strategies are similar to those for **Plateau Pressures**
 - *Except*, where increases in PEEP result in lung recruitment without increasing driving pressure.

Pulmonary Mechanics— **Compliance and Resistance**

Alveolar Distending Pressure

$= 25 \text{ ml./cmH}_{,0}$

= $10 \text{ cmH}_2\text{O}/\text{LPS}$

Basic Strategies for Managing Pulmonary Mechanics

Static Compliance

- •↓ VT to 6 ml/Kg (if ABG permits)
- Body position-Reverse Trendelenburg

Resistance

- > Suction

 Airway diameter ✓ Anatomic Airway-Bronchodilatators ✓ Artificial airway->Increase airway size ► Wiper catheter ➤Tube exchange

Types of Graphics Displays

Scalars are waveform representations of pressure, flow or volume on the y axis vs time on the x axis Loops are representations of pressure vs volume or flow vs volume

Volume Control vs Pressure Control

Assist Control -- Volume Controlled Ventilation

Copyright © 2021 by Elsevier, Inc. All rights reserved.

Pressure Controlled Ventilation

Uses of Vent Waveforms

Abnormal Ventilator Parameters & Lung Mechanics (e.g., Overdistension and Auto-PEEP)

Patient Ventilator Interaction (e.g., Flow starvation, triggering problems)

Vent Circuit & Artificial Airways Problems (e.g., secretion build-up in circuit/Airway), Leaks

Detecting Common Abnormal Events

•Examples: ✓ Scalers Trigger/Sensitivity Problems >Auto-PEEP (air trapping) Patient-Ventilator Desynchrony ✓Loops >Over distension Setting PEEP

Basic Strategies for Managing Auto-PEEP

- Adjustment of Inspiratory Time or Flow Rate ✓↓ I-Time (If Dual Mode/VC+) ✓↑ Airway size
 - ✓↑ Inspiratory Flow (if VC/AC)
- Respiratory Rate (If ABG permits)
- Treatment of Bronchospasm
- Secretion Management/Suctioning
- Address asynchrony/desynchrony

Flow Desynchrony

- A = Adequate flow shown by linear increase in pressure
- B = Severe flow desynchrony

Pressures and Graphics

18

Asynchrony	Graphic representation	Description	Causes
Ineffective	Air Flow (Limin)	Inspiratory muscle efforts not followed by	Inadequate trigger sensitivity
Efforts	I A A A A A	a ventilator breath (red arrows)	Excessive assistance
	Preve (cmHzO)		Overdistension/Air trapping
			Low respiratory drive
			Low level of pCO2
	a 2 4 6 8 10 12 seconds		Oversedation
Double Cycling	40-7 Air Flow (Limin)	Inspiratory effort that continues beyond	Inadequate setting of ventilator
		the ventilator inspiratory time producing a	inspiratory time
	and Break (contined)	second or a third ventilator breath (red	Inadequate trigger sensitivity (too
	A A A A A A A	arrows) without expiration. Consequently,	sensible)
	J.M. M. M. M. M. M. C.	the volume of the first breath is added to	Inadequate circuit pressurization
		the second or third breath.	Patient effort too strong
	0 4 8 12 16 25 24 28 seconds		Reverse triagering
Reverse	Ar Flow (Linin)	Ventilator insufflations that trigger	Oversedation
Triggering		diaphragmatic muscle contractions (red	Orardistansion/Air temping
	The (control)	arrows) in response to passive insufflation	Overdistension/Air trapping
	TAAAAAA	of the lungs. When the diaphragmatic	
		muscle contraction occurs at the end of	
		inspiration a double cycled breath can	
	0 2 4 6 8 10 12 14 seconds	occur (green arrow) .	
Inspiratory	40-1 Air Flow (L/min)	Strong patient inspiratory effort (concavity	Inadequate gas flow
Airflow		in pressure tracing) due to insufficient	Dyspnea
Dyssynchrony	Paw (omHyO)	inspiratory airflow in a patient ventilated	Delisium /Dein
	- Many Marine Marine	in assist-volume controlled mode.	Deinum/Pan
	J P V V V		
	0 2 4 6 8 10 12 seconds		

Basic Strategies for Managing Desynchrony

- Agitation and/or Delirium ✓ Medication
- If stable, switch to PSV => Extubate if possible ✓ Decouple SAT and SBT
- Trigger Sensitivity ✓ Switch to Flow Trigger (if pressure trigger)
- Adjust Inspiratory Time or Inspiratory Flow
- •Auto-PEEP

✓ Address Auto-Peep

 Bronchospasm ✓ Bronchodilators

Pressure Volume Loops with **Different Lung Mechanics**

Low dynamic compliance

20 10 Pressure

High dynamic compliance

1 1 20 10 Pressure Copyright © 2018 by Elsevier, Inc. All rights reserved.

Adjusting PEEP Levels

Figure Eight Pressure Volume Curve -- Suggesting Patient's Inspiratory Flow Exceeds that Which is Set.

23 **Pressures and Graphics**

Basics of Utilizing Pressure Volume Loops

- If Over distension Suspected via An Upper Deflection Beak
 - ✓ Reduce VT, as tolerated per ARDS Net ✓ Reduce Insp Flow or increase I-Time
- If Figure Eight, Increase Flow
- If insufficient PEEP is suspected, consider increasing PEEP to 1-2 CM above lower inflection point, as tolerated.
 - Monitor patient for adverse response ≻Hemodynamic compromise (BP, CO) Driving Pressure

Case 1- Managing Plateau Pressures

- •54 YO, 5'10", 250lb (114 Kg's) male post chest trauma patient day 7 of mechanical ventilation with settings of AC-560-20-60%-8 PEEP. ABG is 7.44-35-61-26- +1 - 91%. PAP = 37 cm H2O, plateau 31 cm H2O.
- What recommendation would you make regarding vent settings to enhance oxygenation and manage airway pressures and why?
- Suggested Recommendations:
 - ✓ Reduce VT from approx. 8 ml/Kg to 6 ml/Kg = 450ml ✓ Increase PEEP to 10 cmH2O, repeat insp. pause ✓ Possibly reduce inspiratory. flow or increase I-time to 1:2 I:E

Case 2- Addressing Auto PEEP

- •21 YO 5'5" 120lb female with status asthmaticus recently intubated for impending respiratory failure. Vent settings are AC – 350 – 24 – 40% - 5 PEEP. ABG 7.39-42-76-24-0-95%. PAP = 39 cm H2O and Plateau pressures approx. 26 cm H2O. An expiratory pause indicates her (intrinsic) auto-PEEP is 10. What recommendation could be made to the attending physician to reduce the auto-PEEP and improve ventilation?
- Suggested Recommendations:
 - ✓ Recommend bronchodilator (continuous albuterol?) ✓ Decrease insp. time (target I:E of 1:3 - 1:4) ✓Increase insp. Flow
 - ✓ Suction A/W
 - ✓ Heliox (70/30)
 - ✓ Manually Decompress (Intermittently take off the vent)

Case 3- Addressing Desynchrony

- •45 YO 5'8" 190lb (86 Kg) male s/p exploratory lap, resulting in an uncomplicated bowel resection. Vent settings are VC 450 -20-40% - 8 PEEP. ABG 7.37-38-112-20--2-99%. PAP = 32 cm H2O and Plateau pressures approx. 24 cm H2O. Actual RR is 32 breaths per minute. HR is sinus tach 120. RASS is +2. What recommendation could be made to the attending physician to improve patient ventilator synchrony?
- Suggested Recommendations:
 - ✓ Decouple SAT and SBT
 - ✓Consider extubation

Selected References

- •Kacmarek, RM, Stoller, J & Heuer AJ, *Egan's* Fundamentals of Respiratory Care, ed 12th ed, 2021.
- •The National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), ARDSNet, NHLBI **ARDS Network**
- Ventilator Graphics: Scalars, Loops, & Secondary Measures. Dexter AM, Clark K, Dexter AM, et al. Respir Care. 2020 Jun;65(6):739-759. doi: 10.4187/respcare.07805.
- Mechanically Ventilating the Severe Asthmatic. Laher AE, Buchanan SK.Laher AE, et al. J Intensive Care Med. 2018 Sep;33(9):491-501. doi: 10.1177/0885066617740079. Epub 2017 Nov 5.J Intensive Care Med. 2018. PMID: 29105540

Questions?

