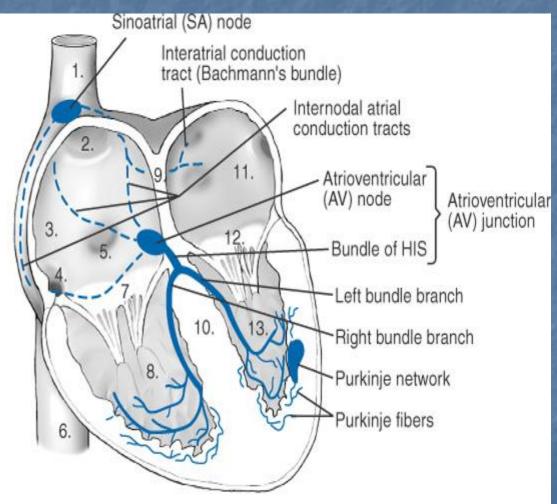
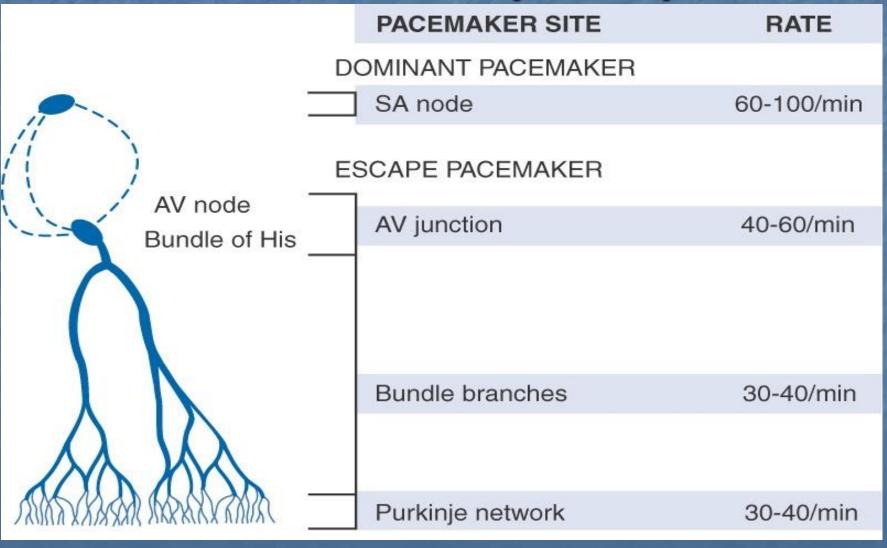

The ABCs of EKGs/ECGs for HCPs

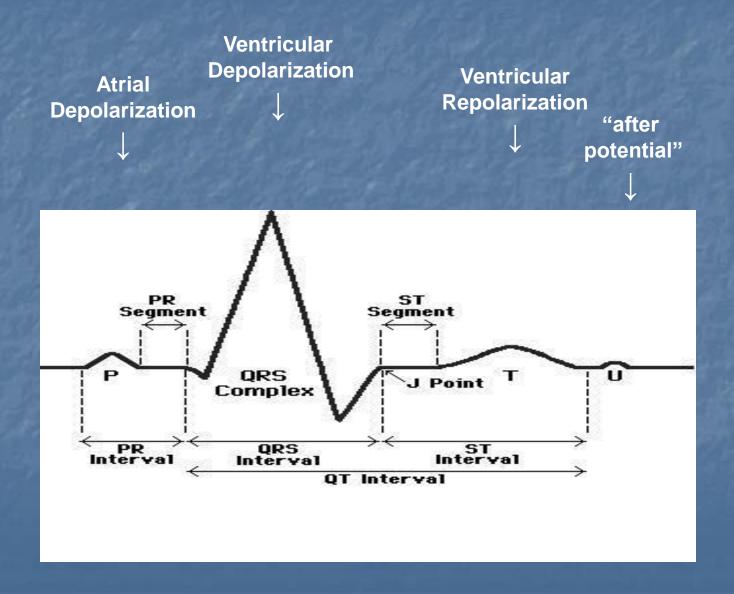
Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions


Learning Objectives

- Review the basic anatomy of the heart
- Describe the cardiac conducting system
- Discuss the indications for EKGs
- Summarize the basics of how to analyze an EKG rhythm
- Review common rhythms, causes and treatment
- Furnish additional resources


Conducting Pathway of the Heart

- 1. Superior vena cava
- 2. Inlet of the superior vena cava
- 3. Right atrium
- 4. Inlet of the inferior vena cava
- 5. Coronary sinus
- 6. Inferior vena cava
- 7. Tricuspid valve
- 8. Right ventricle
- 9. Interatrial septum
- 10. Interventricular septum
- 11. Left atrium
- Mitral valve
- Left ventricle



(Redrawn from Huszar RH: Basic dysrhythmias: interpretation and management, ed 2, St Louis, 1994, Mosby.)

Conduction (Cont.)

EKG = Graphical Depiction of Cardiac Cycle

Indications for EKGs

Chief complains:

- Chest pain
- Dyspnea on exertion
- Orthopnea
- Pedal edema
- Fainting spells
- Palpitations

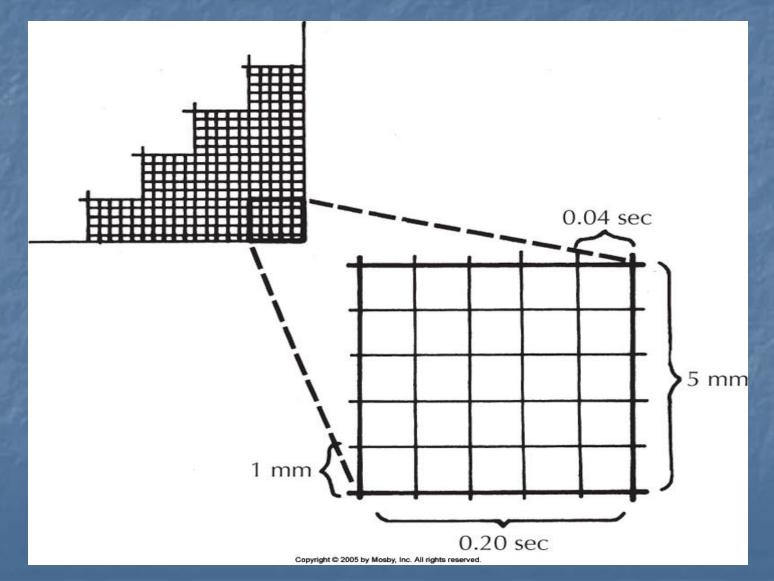
Past medical hx:

- Hx of heart disease
- Hx of cardiac surgery

Physical examination

- Unexplained tachycardia at rest
- Hypotension
- Decreased capillary refill
- Abnormal heart sounds and murmurs
- Cool, edematous, cyanotic extremities
- Diaphoresis
- (+) JVD

Limitations of EKGs


- Does <u>not</u> measure the pumping ability of the heart
- Does <u>not</u> show abnormalities on cardiac structure
- Does <u>not</u> have predictive value
- Artifact
- Operator technique
- Lead placement limitations
- Technical issues

EKG Analysis

- Lethal rhythm requiring immediate attention?
- Is the rate normal, slow or fast?
- Is the rhythm regular?
- *Is there a "P" Wave?*
- What is the PR Interval?
- What is the QRS configuration?
- Are there other characteristics?
 - ST depression
 - Axis deviation
- What is the final interpretation?
- What is the recommended action/treatment

Gridlines = Time Interval

Estimating Rate - If Irregular

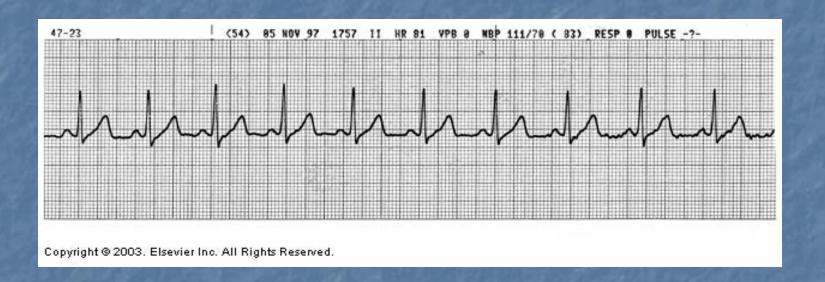
- 6-second technique (irregular rhythms)
 - Select a 6 sec interval strip (30 large boxes)
 - Count the # of QRS complexes
 - Multiply by 10

• e.g. 7 'QRSs' x $10 = \sim 70$ beats/min

Estimating Rate - If Regular



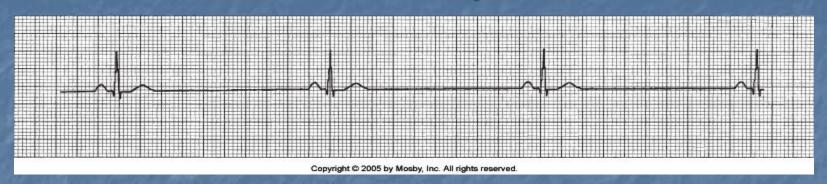
- 1. Pick a complex that falls on a heavy line
- 2. Then estimate the rate by counting heavy boxes
- 3. Using 300, 150, 100, 75, 60, 50, 40, 30



Calculating HR

- Count the number of large boxes between two beats.
- Divide this number into 300.
- Examples:
 - 2 large boxes: 300/2 = 150
 - 4 large boxes : 300/4 = 75
 - 6 large boxes : 300/6 = 50

Normal EKG Rhythm & Values


Normal Values (Adult)

- Rate = 60-100
- P-R Interval = 0.12- 0.20 sec.
- QRS <u><</u> 0.12 sec.

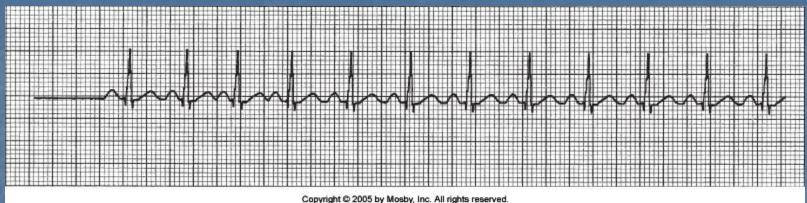
Arrhythmia Etiology

- Disturbance in automaticity
 - Pacemaker speeds up
 - New pacemaker takes over
- Conduction problem: Slowing or blockage of conduction or electrical pulse
- Combination of these two

Sinus Bradycardia

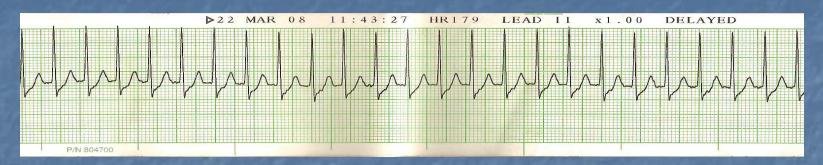
Why Sinus Bradycardia?

- Regular
- Rate < 60
- 1 P for every QRS
- PRI between .12 & .20 seconds
- \blacksquare QRS width = 0.12 seconds


Common Causes?

- MI
- Vagal stimulation
- Increased ICP
- Normal athletic heart???

Treatment?


- Nothing, if patient asymptomatic
- Atropine
- Pacing

Sinus Tachycardia

- Why?
 - HR between 100 & 150
 - Rhythm and intervals OK
- Common Causes?
 - Hypovolemia
 - Fever
 - Pain
 - Anxiety
 - Activity
 - Catacholamines
- Treatment?
 - Treat underlying cause

Supraventricular Tachycardia (SVT)

Why?

- Very Rapid Rate (150-250)
- P wave may be buried in preceding T wave
- PRI difficult to measure but may be between 0.12 and 0.20 secs.

Common Causes?

- Ischemic heart disease
- Excessive catacholamines (e.g., epinephrine)

Treatment?

- Beta Blockers
- Calcium Channel Blockers
- Adenosine (AV blockade)

Atrial Fibrillation

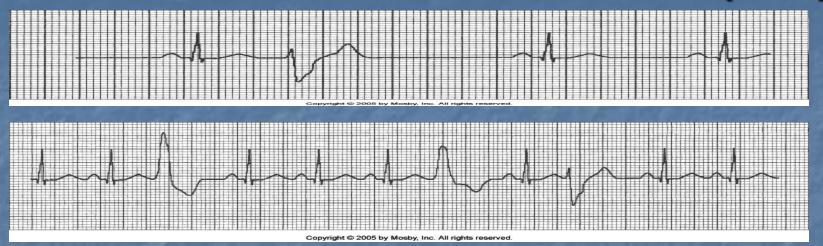
Why?

- No identifiable p-waves
- Chaotic irregular baseline
- QRS distinguishable but irregular & < .12 secs

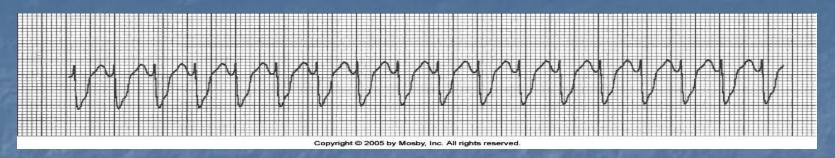
Common Cause

- Enlarged atrium (due to CHF or mitral stenosis)
- Clinical significance:
 - Threat of emboli
 - Decreased cardiac output
 - If rapid rate = less ventricular filling
 - Loss of "Atrial kick"

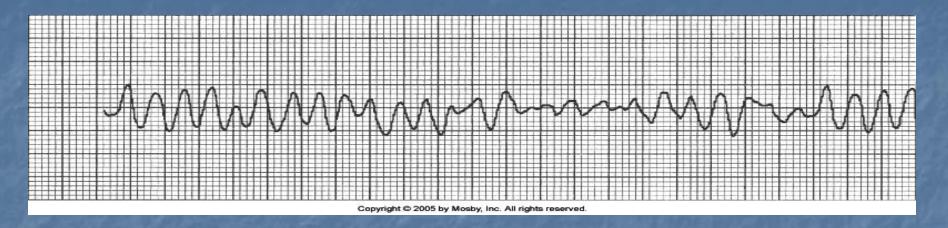
Treatment?


- Beta Blockers (Lopressor)
- Calcium Channel Blockers (Cardizem)
- Digoxin
- Cardioversion

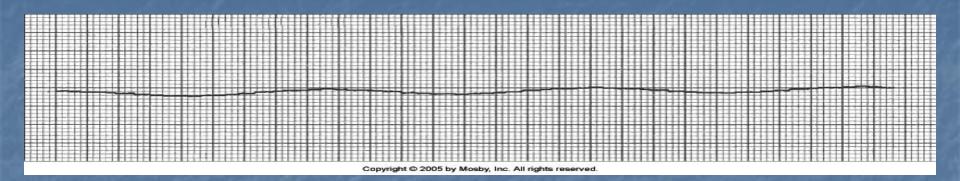
Atrial Flutter


- Why?
 - P waves not present with "Sawtooth" baseline
 - PRI not measurable
 - QRS less than 0.12 seconds
- Common causes?
 - Ischemic heart disease
 - Rheumatic heart disease
- Treatment?
 - Beta Blockers (Lopressor)
 - Calcium Channel Blockers (Cardizem)
 - Digoxin
 - Cardioversion

Premature Ventricular Contraction (PVC)


- Why?
 - Premature beat makes rhythm appear irregular
 - PVC is not preceded by a P-wave
 - PRI is not measurable
- Common Causes?
 - Hypokalemia
 - MI or ischemia
 - Hypoxemia
 - Hypovolemia
- Treatment?
 - Treat underlying cause
 - Beta blockers
 - Antiarrhythmic drugs (Amiodarone or Lidocaine)

Ventricular Tachycardia


- Why?
 - Rate generally between 100 & 200
 - P-waves not present
 - PRI not measurable
 - QRS wide and bizarre, width > 0.12 seconds
- Common Causes?
 - Similar to PVCs
- Treatment?
 - If pulse & stable: Similar antiarrhythmic drugs as PVCs
 - If pulseless, then immediately begin CPR and rapid defibrillation

Ventricular Fibrillation

- Why?
 - Chaotic rhythm
 - HR can not be determined
 - P-waves, PRI and QRS not discernable
- Causes?
 - MI or ischemia
 - Acidosis
 - Hypothermia
 - Hypoxemia
- Treatment = ABCDs of ACLS, including immediate defibrillation

Asystole

Causes:

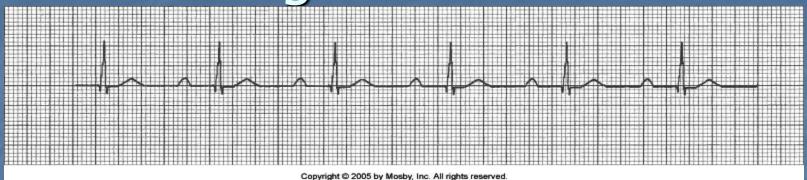
- Electrolyte disturbances
- Pneumothorax
- Drug overdose
- Hypoxemia
- Post MI

Treatment =

- Not shockable
- Immediate CPR, unless a valid DNR
- Identify and treat underlying cause
- Pacing
- Basic troubleshooting.

Pulseless Electrical Activity (PEA):

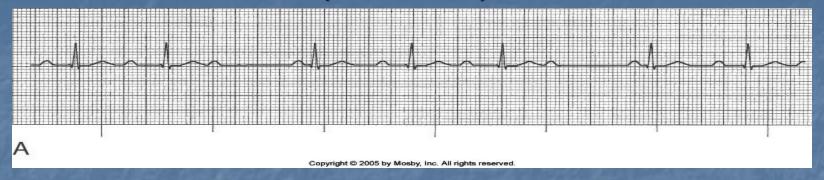
Electrical Conduction without Mechanical Activity of the Heart. Most common causes are as follows:


■ <u>5 H's:</u>

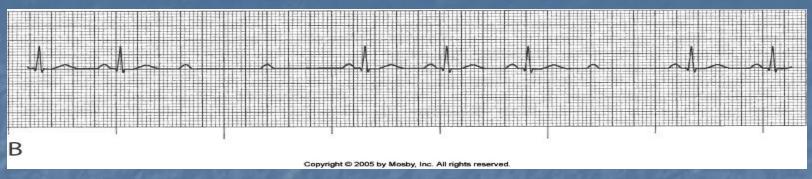
- Hypovolemia,
- Hypoxia,
- H+(acidosis),
- Hyper/hypokalemia
- Hypothermia

5 T's:

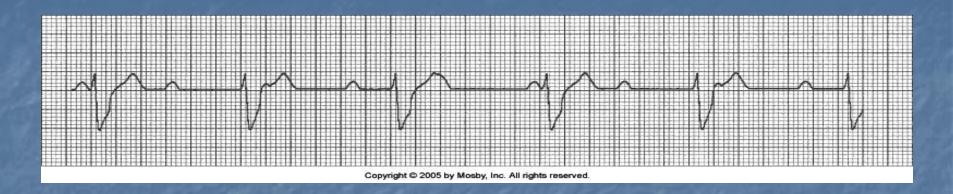
- Tamponade (cardiac),
- Tension pneumo,
- Thrombosis (coronary),
- Thrombosis (pulmonary)
- Tablets (OD)


First Degree Heart Block

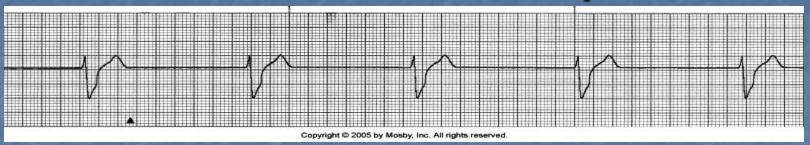
- Why?
 - Regular rhythm
 - Rate 60-100
 - QRS < 0.12 secs</p>
 - PRI Interval > 0.20 secs
- Causes?
 - Physiologic interference with conduction pathway
 - Digoxin toxicity
- Treatment?
 - May be benign
 - Treat underlying cause
 - Stop digoxin, if levels are high


2nd Degree Heart Block-Type I

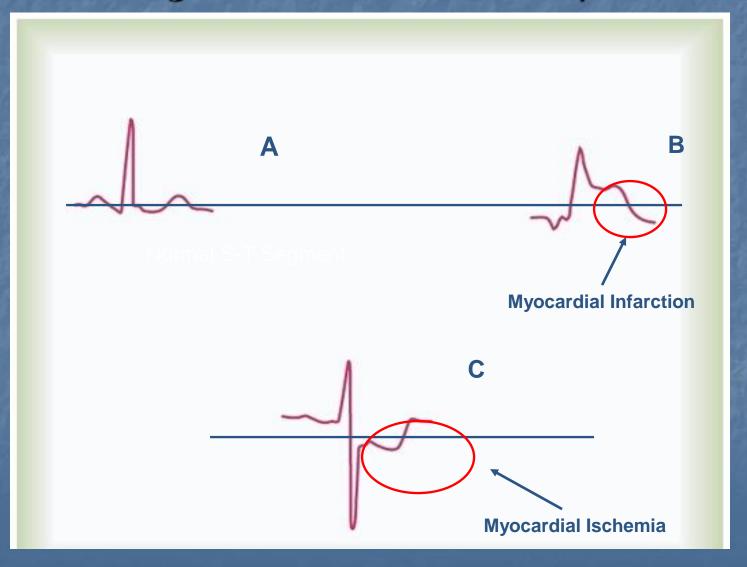
(Wenckebach)


- Why?
 - Irregular rhythm
 - Ventricular rate < atrial rate</p>
 - Progressive prolongation of PRI interval until a QRS is dropped
- Causes?
 - Mi or ischemia
 - Excessive beta blockers
 - Digoxin toxicity
- Treatment?
 - Atropine if symptomatic heart rate < 60</p>
 - Monitor

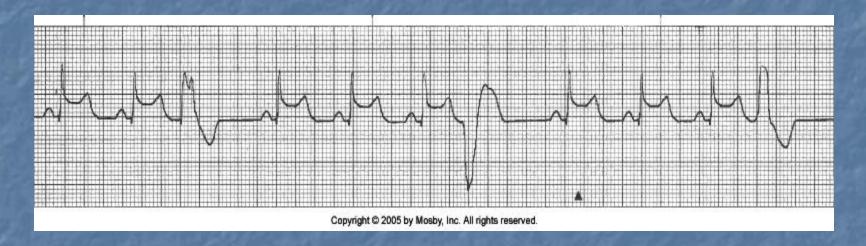
Second Degree Heart Block-Type II


- Why?
 - Regular rhythm
 - Ventricular rate < atrial rate</p>
 - QRS does not occur with every p-wave (some QRS's are dropped)
 - More p- waves than QRS
- Causes?
 - MI or ischemia
 - Excessive beta blockers
 - Digoxin toxicity
- Treatment?
 - Atropine if symptomatic heart rate < 60
 - Pacemaker

Third Degree Heart Block


- Why?
 - Independent atrial (P wave) and ventricular activity.
 - The atrial rate is always faster than the ventricular rate.
 - HR often < 40</p>
 - PRI not measurable
 - QRS may be > 0.12 seconds
- Causes?
 - MI or ischemia
 - Digoxin toxicity
- Treatment?
 - Atropine
 - Pacemaker

Idioventricular Rhythm

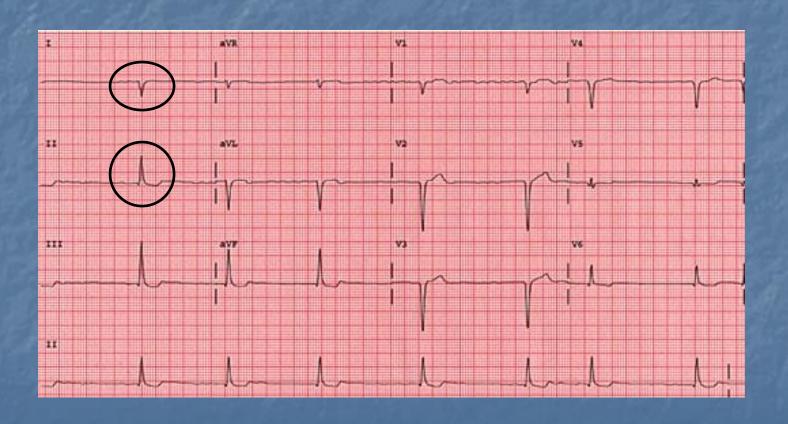


- Why?
 - Ectopic foci takes over as pace maker for ventricles
 - No "P" waves
 - Wide QRS (> 0.12 secs)
 - Rate 30-40, unless accelerated
- Common causes?
 - _ MI
- Treatment?
 - Pacing
 - Atropine

Other EKG Abnormalities: ST Segment Elevation & Depression



ST Elevation with a PVC


- Cause: Acute MI
- Treatment:
 - TPA ("clot busters")
 - Vasodilators
 - Revascularization

S-T Segment Depression

- Copyright © 2005 by Mosby, Inc. All rights reserved.
- Cause: Myocardial Ischemia
- Treatment:
 - Vasodilators
 - Oxygen
 - Revascularization

Right Axis Deviation

Identifying Axis Deviation

Quick Axis Determination

Lead Axis Interpretation

I is Positive Normal

II is Positive

I is Positive Left Axis deviation

II is Negative

I is Negative Right Axis Deviation

II is Positive

I is Negative Extreme Right axis

II is Negative Deviation

Also: With Right Axis Deviation, lead 3 will positive, but taller than lead II.

Causes of Axis Deviation:

Right Axis Deviation

- Right ventricular hypertrophy
- COPD
- Acute PE
- Infants (normal)
- Bi-ventricular hypertrophy

Left Axis Deviation

- Left ventricular hypertrophy
- Abdominal obesity
- Ascites or large abdominal tumors
- Third trimester pregnancy

Take Home Messages

- Decide What it is you Need/Want to know about EKGs/ECGs
- Identify resources
 - Texts
 - Manuals
 - Actual EKG strips
- Review and reinforce
- Obtain and maintain ACLS
- Know thy limitations

Additional Resources

- Aehlert B: ECGs made easy, ed. 3, Mosby 2005.
- American Heart Association: Advanced cardiovascular life support, AHA, 2008.
- Goldberger AL: Clinical electrocardiography: a simplified approach, ed. 7, Mosby 2006.
- Heuer A & Scanlan C: Clinical Assessment in Respiratory Care, ed 7, Elsevier, 2013
- Thaler MS: The only ECG book that you'll ever need, ed. 5, Lippincott-Raven, 2006.
- www.ecglibrary.com